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figure in the 4.0 to 6.O-GHZ frequency range with a maximum flat

gain. The analytic approach used in [2] was the basis of the input

network design. This input network was designed to match the

conjugate of the optimum source impedance for low noise at 5.0

GHz. Interpolation was used to derive this impedance from the

published data at 4.0 and 6.0 GHz. The network element values

were derived from an n =3, 0.01 -dB ripple, Chebyshev low-pass

prototype [8]. The first impedance inverter ( K34) was omitted

from the finaf design because its 50.75 fl impedance contributed

little to the overall match.

The transistor output equivalent circuit was derived from the

conjugate of the reflection coefficient for a matched output with

minimum noise. The unilateral gain approximation as described

in [9] was used to find the maximum amplifier gain at 4.0 and 6.0

GHz. The source reflection coefficient derived from the conjugate

of the transistor input equivalent circuit at 4.0 and 6.0 GHz was

used in this unilateral gain approximation. This required 3.55 dB

of loss at 4.0 GHz. A maximum gain of 8.45 dB at 6.0 GHz was

expected for the amplifier. The diplexer network needed to

provide 2.85 dB of the 3.55-dB loss, and so a normalized band-

width of 0.864 was used. Although the cascade of two identical

single-stage amplifiers provided acceptable results without adjust-

ment of any of the circuit elements, optimization improved the

gain flatness and output reflection coefficient. The noise figures

of 2.1 dB and 4.0 GHz and 2.35 dB at 6.0 GHz were changed to

1.9 dB at 4.0 GHz and 2.48 dB at 6.0 GHz during optimization.

The relatively high VSWR of this amplifier’s input, as shown in

Fig. 7(b), is due to providing an optimum source impedance for

noise minimization.

The formulas presented in this paper are useful whenever the

equivalent circuit of the device is a parallel RC network. There-

fore, bipolar transistor amplifiers operating well below the device’s

~, may contain the circuit just presented as an input matching

network.

IV. CONCLUSION

A simple output network was shown to simultaneously provide

gain-compensation and a predictable amplifier design. The feasi-

bility of this design method was demonstrated by cascading two

identical single-stage amplifiers and calculating the total ampli-

fier ~-parameters before and after optimization. Although the

input and output networks were designed by treating the ampli-

fier as if these networks did not interact, the actual results agreed

well with simple theory. Explicit formulas for the design of

lumped and distributed output networks were presented.
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Application of the Galerkin Method for

Determination of Quasi TEiOk Mode Frequencies of a

Rectangular Cavity Containing a Dielectric Sample

ANDRZEJ KEDZIOR AND JERZY KRUPKA

,4 Mract —A new method determination of quasi TEiOk mode frequen-

cies of a rectangular cavity containing a dielectric sample is presented. A

centrally loaded dielectric sample fills completely only one dimension of a

cross section of the cavity. The calculations are based on the Galerkin

method using a new suitable set of basis functions. The theoretical results

are illustrated by experiments. The obtained results of calculations and

experiments demonstrate the advantages of the new basis as compared with

the classical one. The presented method may be applied for the analysis of

two-dimensional boundary problems for various resonant cavities with

inhomogeneous filling.

I. INTRODUCTION

It is often necessary to determine the permittivity of rectangu-

lar samples of precisely defined dimensions at microwave fre-

quencies. The parameters of such samples are determined most

frequently by resonance method. The form of the sample de-

termines the rectangular form of the cavity [2], [4], [5]. An accu-

rate determination of the permittivity of precisely defined dimen-

sion samples is often difficult, especially at the low microwave

frequencies. At these frequencies cavity dimensions are usually

larger than respective sample dimensions. This leads to the

necessity of using approximate methods for determining the

resonant frequency of the cavity in relation to the permittivity.

Since it is easier to determine the resonant frequency of the cavity

at a fixed permittivity, the paper presents the solution of such

problems.

II. THEORY

In this section is presented a method of determining the

angular frequencies of quasi TE, ~~ modes (i, k = odd numbers)

of rectangular cavity with infinity conducting walls, filled with a

dielectric in the way shown in Fig 1(a). This problem is reduced

to determination of the eigenvalues of the boundary problem

Lc$= juM~

rrxz?=o, on S (1)

Manuscript received July 7, 198 I; revised Sept. 16, 1981,

The authors are with the hrst ytut Technologli Elektronowej, Pohtechnikl

Warszawskiej u1, Koszykowa 75, 00–662 Warszawa, Poland

001 8-9480/82/0200-01 96$00.75 @l 982 IEEE



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-30, NO. 2, FEBRUARY 1982 I 97

where

L=

b b

I z

a
YQJ 5

J.-+

J@_” ~
2

1 4

(a) (b)

Fig. 1, Rectangular resonant cavity with a centrally located dielectric sample.

(a) The problem analyzed in this paper, (b) Basic problem with analytical

solutions.

[1, in the remaining part of the cavity

where

E, H electric and magnetic fields inside the cavity.
s surface of the cavity.

The solution of the above problem has been obtained by the

Galerkin method. Following this method, the function @ is ex-

panded into the finite sum of the functions

(2)

{an} set of coefficients to be determined.

{+.} set of basis functions. It is a set of functions belonging

to the field of definition of the operator L and satisfying

the proper boundary conditions on S.

Currently the solutions of the boundary problem (1) for an

empty cavity have been used to analyse similar problems [1], [2].

In the approach presented in this paper a new basis is formed by

the functions being the solutions of the boundary problem(1) for

the cavity with a transverse cross section completely filled by a

dielectric as shown in Fig 1(b). Since we are looking for the

frequencies of specific types of modes, the basis can be reduced

to the class of rotational functions corresponding to electric and

magnetic fields of quasi TE,O~ modes (i, k = odd numbers) of the

resonator from Fig l(b). Functions @ may be thus written in the

form [1]

(3)

Substituting (3) into (1) and forming inner products in the cavity

volume v one obtains a system of linear equations

)S(~.n-hnjet=o, *=1,2,. ... N (4)
“=1

where

A (~~o’h,+m)
mn = , +.=[%,%],

[1
+m. :

%% m
where

% ?% angular frequencies corresponding to the individ-

ual types of quasi TEZo~ modes of the cavity from

Fig l(b).

() inner product of functions (j, g) ; Jvfg*dv.

The systems of equations (4) have nontrivial solutions for u

values if

(5)

so the set of 1/02 values being eigenvalues of matrices A ~. is the

solution of problem (1).

III. CHOICE OF BASIS FUNCTIONS

The most essential problem appearing at the application of the

Grderkin method consists in the choice of N basis functions

which provide the best accuracy for the calculation of angular

frequencies. The relatively easiest situation occurs in the case of

calculating the lowest frequency value corresponding to quasi

TE ,., mode. In this case it “is known that the frequency value

calculated by the Galerkin method is in excess of the accurate

value [2]. As a consequence, there appears a possibility of simple

evaluation of various bases. The basis which provides the lower

value of frequency is better. In the case of calculating the higher

mode frequencies it is impossible to establish if the calculated

value of the frequency is in excess of the accurate vrdue. There-

fore, in the case of higher order modes, the evaluation of the

convergence of the solutions for various sets of basis functions

has been verified experimentally.

Fig. 2 presents the values of calculation errors of angular

frequency shift of a quasi TE ,01 cavity with a sample of the width

s/a =0.4, using various sets of basis functions with both classical

(empty cavity modes) and new bases. The “exact” value of

angular frequency co,, used as a reference for error calculations, is

assumed to equal the lowest angular frequency value among the

values of corresponding various bases. The maximum number of

basis functions N was limited to 15, and three various configura-
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Fig. 2. Errors of frequency shift determination in quasi-TEIO, cavity contain-

ing a sample width s/a =0,4 for various sets of ba.m functions. The results

are refered to the “exact” value of angular frequency shift. Numbers on the

curves denote subscripts i Ok of ~} ok basis functions (classical basin) and

quasi-TE,Ok basis function (new basis).
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Fig. 3. Various sets of ba.m functions consisting of TE,ok and quasi-TE,OA

modes.

Fig. 4. Frequency shift of quasi-TE105 cavity calculated using various bases.

a) The best new 15-function basis. b) The best classical 15-function basis. c)

A new single-function basis. d) The classical single-function basis. The point

denotes the experimental results.

tions of sets for classicaf and new bases denoted by letters L, T, S
were used (Fig. 3). For each of the three configurations the

number of basis functions was subsequently reduced to one in a

sequence marked in Fig. 2. The three and four figure numbers on

Fig. 2 and Fig. 3 denote subscripts i Ok of TE,O~ basis functions

(classical basis—empty cavity modes) and quasi-TE(O~ basis

functions (new basis).

It follows from Fig. 2 that the use of a new basis yields best

results in the case of T configuration, whereas the classical basis

yields the best results in the case of L configuration. The classicaf

15-function basis L provides the same calculations accuracy as

the new basis composed of only two functions.

Fig. 4 presents the values of the frequency shift of a quasi

TE ,05 cavity with samples of various width s, calculated for the

best two 15-function bases among those compared in Fig. 2 (new

and classical ones) and two single function bases. The experime-

ntal data are marked by points. The results of calculations and

experiments confirm the results presented in Fig. 2.

IV. CONCLUSIONS

The performed calculations and measurements lead to the

conclusion that the modification of the basis in the Galerkin

method, presented in this paper, yields much more accurate

results of calculations than the use of the classical basis (with

some restrictions imposed on sample dimensions, mentioned in

the paper). The presented method may find applications in the

analysis of two-dimensional boundary problems for cavities with

regular inhomogeneous filling. Such problems are typically en-

countered in the measurements of the permittivity of dielectrics.
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The Conservation of Complex Power Technique and

E-Plane Step-Diaphragm Junction Discontinuities

E. M. SICH, MEMBER, IEEE, AND R. H. MACPHIE, SENIOR
MEMBER,IEEE

A b.$trszct—The singular integraf equation solution due to L. Lewin

hk colleagues for the E-plane step-dia~bragm iunction discontinui~

and

are

extended by the conserva-tion of complex ~we; technique (CCPT)~ The

singular integral equation method provides formulas for the junction sus-
ceptance (both with and without a diaphragm) which are vafid only in the
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