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figure in the 4.0 to 6.0-GHz frequency range with a maximum flat
gain. The analytic approach used in [2] was the basis of the input
network design. This input network was designed to match the
conjugate of the optimum source impedance for low noise at 5.0
GHz. Interpolation was used to derive this impedance from the
published data at 4.0 and 6.0 GHz. The network element values
were derived from an n =3, 0.01-dB ripple, Chebyshev low-pass
prototype [8]. The first impedance inverter (K;,) was omitted
from the final design because its 50.75 £ impedance contributed
little to the overall match.

The transistor output equivalent circuit was derived from the
conjugate of the reflection coefficient for a matched output with
minimum noise. The unilateral gain approximation as described
in [9] was used to find the maximum amplifier gain at 4.0 and 6.0
GHz. The source reflection coefficient derived from the conjugate
of the transistor input equivalent circuit at 4.0 and 6.0 GHz was
used in this unilateral gain approximation. This required 3.55 dB
of loss at 4.0 GHz. A maximum gain of 8.45 dB at 6.0 GHz was
expected for the amplifier. The diplexer network needed to
provide 2.85 dB of the 3.55-dB loss, and so a normalized band-
width of 0.864 was used. Although the cascade of two identical
single-stage amplifiers provided acceptable results without adjust-
ment of any of the circuit elements, optimization improved the
gain flatness and output reflection coefficient. The noise figures
of 2.1 dB and 4.0 GHz and 2.35 dB at 6.0 GHz were changed to
1.9 dB at 4.0 GHz and 2.48 dB at 6.0 GHz during optimization.
The relatively high VSWR of this amplifier’s input, as shown in
Fig. 7(b), is due to providing an optimum source impedance for
noise minimization.

The formulas presented in this paper are useful whenever the
equivalent circuit of the device is a parallel RC network. There-
fore, bipolar transistor amplifiers operating well below the device’s
fr may contain the circuit just presented as an input matching
network.

IV. CONCLUSION

A simple output network was shown to simultaneously provide
gain-compensation and a predictable amplifier design. The feasi-
bility of this design method was demonstrated by cascading two
identical single-stage amplifiers and calculating the total ampli-
fier S-parameters before and after optimization. Although the
input and output networks were designed by treating the ampli-
fier as if these networks did not interact, the actual results agreed
well with simple theory. Explicit formulas for the design of
lumped and distributed output networks were presented.
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Application of the Galerkin Method for
Determination of Quasi TE,,, Mode Frequencies of a
Rectangular Cavity Containing a Dielectric Sample

ANDRZEJ KEDZIOR aND JERZY KRUPKA

Abstract —A new method determination of quasi TE,,, mode frequen-
cies of a rectangular cavity containing a dielectric sample is presented. A
centrally loaded dielectric sample fills completely only one dimension of a
cross section of the cavity. The calculations are based on the Galerkin
method using a new suitable set of basis functions. The theoretical results
are illustrated by experiments. The obtained results of calculations and
experiments demonstrate the advantages of the new basis as compared with
the classical one. The presented method may be applied for the analysis of
two-dimensional boundary problems for various resonant cavities with
inhomogeneous filling.

I. INTRODUCTION

It is often necessary to determine the permittivity of rectangu-
lar samples of precisely defined dimensions at microwave fre-
quencies. The parameters of such samples are determined most
frequently by resonance method. The form of the sample de-
termines the rectangular form of the cavity [2],[4],[5]. An accu-
rate determination of the permittivity of precisely defined dimen-
sion samples is often difficult, especially at the low microwave
frequencies. At these frequencies cavity dimensions are usually
larger than respective sample dimensions. This leads to the
necessity of using approximate methods for determining the
resonant frequency of the cavity in relation to the permittivity.
Since it is easier to determine the resonant frequency of the cavity
at a fixed permittivity, the paper presents the solution of such
problems.

II. THEORY

In this section is presented a method of determining the
angular frequencies of quasi TE,,, modes (i, k = odd numbers)
of rectangular cavity with infinity conducting walls, filled with a
dielectric in the way shown in Fig 1(a). This problem is reduced
to determination of the eigenvalues of the boundary problem

Lo= joMs

nXE=90, onS

(1
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Rectangular resonant cavity with a centrally located dielectric sample.

(a) The problem analyzed in this paper. (b) Basic problem with analytical

Fig. 1.
solutions.
where
_|1 0 v X | €of 0 [E]
L= - =
ve o] M [0 —,LO] *=lu
a—s ats I—d I+d
= for 5 Sx< 3 and 3 sZs 2
1, in the remaining part of the cavity
where

E,H electric and magnetic fields inside the cavity.
S surface of the cavity.

The solution of the above problem has been obtained by the
Galerkin method. Following this method, the function ¢ is ex-
panded into the finite sum of the functions

N
$= 2 a4, @)
n=1
where
{a,} set of coefficients to be determined.
{¢,} set of basis functions. It is a set of functions belonging

to the field of definition of the operator L and satisfying
the proper boundary conditions on S.

Currently the solutions of the boundary problem (1) for an
empty cavity have been used to analyse similar problems [1],[2].
In the approach presented in this paper a new basis is formed by
the functions being the solutions of the boundary problem (1) for
the cavity with a transverse cross section completely filled by a
dielectric as shown in Fig I1(b). Since we are looking for the
frequencies of specific types of modes, the basis can be reduced
to the class of rotational functions corresponding to electric and
magnetic fields of quasi TE,, modes (i, k = odd numbers) of the

resonator from Fig 1(b). Functions ¢ may be thus written in the

form [1]

N E
— E _H n
= g [an,an][H]. 3)
n=1 n
Substituting (3) into (1) and forming inner products in the cavity
volume ¥ one obtains a system of linear equations

ul 1
2 (Amn_smn_i)arftl:(L m=1,2,~~
w

n=1

4

» N

where
— <€€O¢n ’ ¢ > Em
Am"_———-wm_w;m—’ ¢n=[En7Hn]’ b = H,
where ‘
®,,, W, angular frequencies corresponding to the individ-
ual types of quasi TE,;, modes of the cavity from
Fig I(b).
(> inner product of functions { f, g) ;—} fvfg*do.

The systems of equations (4) have nontrivial solutions for w
values if .

det |4,,,— 8, =0

mn
0)2

)

so the set of 1/w? values being eigenvalues of matrices A,,), is the
solution of problem (1).

111

The most essential problem appearing at the application of the
Galerkin method consists in the choice of N basis functions
which provide the best accuracy for the calculation of angular
frequencies. The relatively easiest situation occurs in the case of
calculating the lowest frequency value corresponding to quasi
TE,j; mode. In this case it is known that the frequency value
calculated by the Galerkin method is in excess of the accurate
value [2]. As a consequence, there appears a possibility of simple
evaluation of various bases. The basis which provides the lower
value of frequency is better. In the case of calculating the higher
mode frequencies it is impossible to establish if the calculated
value of the frequency is in excess of the accurate value. There-
fore, in the case of higher order modes, the evaluation of the
convergence of the solutions for various sets of basis functions
has been verified experimentally. )

Fig. 2 presents the values of calculation errors of angular
frequency shift of a quasi TE,q, cavity with a sample of the width
s/a =0.4, using various sets of basis functions with both classical
(empty cavity modes) and new bases. The “exact” value of
angular frequency w,, used as a reference for error calculations, is
assumed to equal the lowest angular frequency value among the
values of corresponding various bases. The maximum number of
basis functions N was limited to 15, and three various configura-

CHOICE OF BASIS FUNCTIONS



IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. MTT-30, NO. 2, FEBRUARY 1982

198
1 $ 10 N 15
15 Vot (202 T L
VoW | \\ 1)5101
ey o3 3 =52584 MHz
0 L sis a =30mm
(el | T NEW BaSI b =195mm
\ " —CLASSICAL BASIS ¢ _qu¢
10 j \\1 05 S/a=04
- N 3 =sozpm
ONRLS o sps oo
i 109301 393 27 397°07 503 57 31 P o1
SN0t 101?\0 305 §61 505 703
1013 se _1017
1015~ 1021
-\ 101975 1025 __ 1029
BN 1023 37> L
21 . 105
L 1023 L
. 7
U N S v i
015530555,

503 %5, 703 307 T

Fig. 2. Errors of frequency shift determination in quasi-TE,q; cavity contain-
ing a sample width s /a =0.4 for various sets of basis functions. The results
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curves denote subscripts 10k of TE,, basis functions (classical basis) and
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Fig. 4. Frequency shift of quasi-TE (s cavity calculated using various bases.
a) The best new 15-function basis. b) The best classical 15-function basis. ¢)
A new single-function basis. d) The classical single-function basis. The point
denotes the experimental results.

tions of sets for classical and new bases denoted by letters L, 7T, S
were used (Fig. 3). For each of the three configurations the
number of basis functions was subsequently reduced to one in a
sequence marked in Fig. 2. The three and four figure numbers on
Fig. 2 and Fig. 3 denote subscripts i0k of TE,, basis functions
(classical basis—empty cavity modes) and quasi-TE,, basis
functions (new basis).

It follows from Fig. 2 that the use of a new basis yields best
results in the case of T configuration, whereas the classical basis
yields the best results in the case of L configuration. The classical
15-function basis L provides the same calculations accuracy as
the new basis composed of only two functions.

Fig. 4 presents the values of the frequency shift of a quasi
TE o5 cavity with samples of various width s, calculated for the
best two 15-function bases among those compared in Fig. 2 (new
and classical ones) and two single function bases. The experimen-
tal data are marked by points. The results of calculations and
experiments confirm the results presented in Fig. 2.

IV. CONCLUSIONS

The performed calculations and measurements lead to the
conclusion that the modification of the basis in the Galerkin
method, presented in this paper, yields much more accurate
results of calculations than the use of the classical basis (with
some restrictions imposed on sample dimensions, mentioned in
the paper). The presented method may find applications in the
analysis of two-dimensional boundary problems for cavities with
regular inhomogeneous filling. Such problems are typically en-
countered in the measurements of the permittivity of dielectrics.
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The Conservation of Complex Power Technique and
E -Plane Step-Diaphragm Junction Discontinuities
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A bstract —The singular integral equation solution due to L. Lewin and
his colleagues for the E-plane step-diaphragm junction discontinuity are
extended by the conservation of complex power technique (CCPT). The
singular integral equation method provides formulas for the junction sus-
ceptance (both with and without a diaphragm) which are valid only in the
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